

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CO-ORDINATE	ED SCIENCES		0654/33
Paper 3 (Core		October/Novem	ber 2018
			2 hours
Candidates and	swer on the Question Paper.		
No Additional N	Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

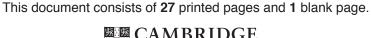
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.


You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

© UCLES 2018

1 Fig. 1.1 shows a forest food web.

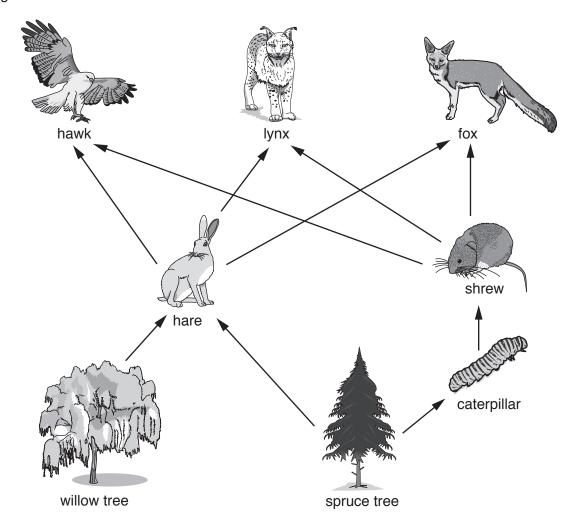


Fig. 1.1

- (a) Use Fig. 1.1 to name one:
 - (i) producer

[1]

(ii) herbivore.

[1]

(b) A disease is introduced that kills all the foxes.					
Suggest and explain how this affects the population of:					
	(i) hares				
		[1]			
	(ii)	lynx.			
		[2]			
(c)	Tree	es are removed from the forest.			
	Explain why this causes animal populations in the forest to decrease.				
		[2]			

2 Table 2.1 shows information about some of the elements in Group VII of the Periodic Table.

Table 2.1

element	symbol	atomic number	physical state at 20°C
chlorine	Cl	17	
bromine	Br	35	
iodine	I	53	

(a)	(i)	Complete Table 2.1 to show the physical state of each element at 20 °C.	
		Use only the words solid , liquid or gas .	[2]
	(ii)	The atomic number of chlorine is 17.	
		Explain what is meant by this statement.	
			[1]
	(iii)	Predict the number of electrons in an atom of bromine.	
		Explain how you used the information in Table 2.1 to make your prediction.	
		number of electrons	
		explanation	
			[1]
(b)	Soc	dium chloride contains sodium ions strongly attracted to chloride ions.	
	(i)	State why sodium ions and chloride ions attract one another.	
			[1]
	(ii)	Describe, in terms of electrons, how a sodium atom changes when it reacts with chlo	rine
			ra 1

(c) The bottle in Fig. 2.1 contains sand and a solution of sodium chloride.

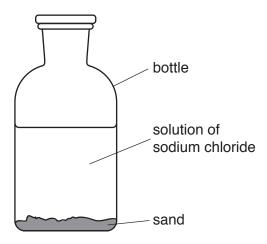


Fig. 2.1

(i)	State the method used to separate the solution of sodium chloride from the sand.
	[1]
(ii)	Describe how solid sodium chloride can be obtained from the solution of sodium chloride.
	[2]
	cribe what is seen when an acidified solution of silver nitrate is added to a solution of um chloride.
Ехр	lain your answer.
wha	t is seen
expl	anation
	[2]

(d)

3 (a) An electric kettle, an electric fan and a torch (flashlight) all transform electrical energy into other forms of energy. Fig. 3.1 shows a kettle, a fan and a torch.



Fig. 3.1

Draw **one** line from each device to the most useful form of energy that it produces.

device	most useful energy produced		
	chemical		
fan			
	kinetic		
kettle			
	light		
torch			
	thermal		
	[3]		

(b) A torch contains two cells, a lamp and a switch connected in series.

Draw a circuit diagram for the torch using electrical circuit symbols.

[2]

(c)	The current in the lamp is 0.6A when the potential difference across it is 3.0 V.				
	Calculate the resistance of the lamp.				
	State the formula you use and show your working.				
	form	nula			
	wor	king			
		resistance = Ω [2]			
(d)	Fig.	3.2 shows a single ray from the torch shining on a mirror.			
		Fig. 3.2			
	(i)	Name the effect that occurs at point X .			
		[1]			
	(ii)	On Fig. 3.2, label the angle of incidence with the letter <i>i</i> .			
(e)		ches sometimes use rechargeable cells. Solar energy can be used to recharge these s. Solar energy is a renewable energy source.			
	(i)	State one other renewable energy source.			
		[1]			
	(ii)	State one non-renewable energy source.			
		[1]			

ı	(a)	State the term used to describe the loss of water from a leaf by evaporation.	[4]
	(b)	Two similar leaves are removed from the same plant.	[1]
		• Leaf A is kept in an environment of high humidity.	
		Leaf B is kept in an environment of low humidity.	

All other variables are kept the same.

The mass of each leaf is measured each hour for six hours.

Table 4.1 shows the results.

Table 4.1

time/hours	mass of leaf A /g	mass of leaf B /g
0	0.90	0.90
1	0.90	0.86
2	0.90	0.83
3	0.87	0.80
4	0.87	0.78
5	0.85	0.78
6	0.85	0.75

	(1)	Calculate the difference in mass between leaf A and leaf B at six hours.	
			[1]
	(ii)	Explain the difference in mass between leaf A and leaf B at six hours.	
			[2]
(c)	Des	cribe how plants obtain water.	
			[2]

(u)	i) (i) Draw a circle around two substances transported by xylem in plants.						
		blood	carbon o	dioxide	glucose	methane	
		mineral	ions	oxygen	urea	water	[2]
	(ii)	State one other	function of	xylem apart f	rom transport.		

5	(a)	Cald	sium, copper, iron and potassium are metallic elements in the fourth period of the Periodic e.			
		(i)	List these four metals in order of	reactivity.		
				most reactive		
				least reactive [1]		
		(ii)	State which of these metals are to			
	(b)	A st	udent investigates the reaction be	tween calcium and water.		
		Fig.	5.1a shows the calcium reacting v	vith water.		
		Fig.	5.1b shows the test-tube after the	reaction has finished.		
			bubbles of gas	solution C white solid		
			Fig. 5.1a	Fig. 5.1b		
		(i)	he reaction.			
		(::\		[1]		
		(ii)	Suggest a value for the pH of solu	ution C.		
			Explain your answer. pH			
			,			
				[2]		

	(iii)	The student tests an acidic solution and an alkaline solution using full-range indicator, compare with solution C .			
		Describe the colour of the acidic solution and the alkaline solution when tested with full-range indicator.			
		colour of acidic solution			
		colour of alkaline solution[2]			
	(iv)	The reaction between calcium and water is exothermic.			
		Describe what is meant by the term exothermic.			
		[1]			
(c)	Wa	ter must be present for iron to rust.			
	(i)	State what else must be present for iron to rust.			
		[1]			
	(ii)	Describe one method to prevent an iron object from rusting.			
		Explain your answer.			
		method			
		explanation			
		[2]			

6 (a) Table 6.1 shows the audible frequency range of four animals.

Table 6.1

animal	lowest frequency/Hz	highest frequency/Hz	
bat	2000	110 000	
dog	50	50 000	
elephant	5	12000	
mouse	1000	100 000	

	(i)	State the meaning of the term audible frequency range.					
	(ii)	State the audible frequency range for a human.	-				
		lowest frequencyHz					
		highest frequencyHz	[2]				
	(iii)	State which animal in Table 6.1 can hear a sound with the highest pitch.					
			1]				
	(iv)	State which animal in Table 6.1 has the smallest audible frequency range.					
		[1]				
(b)		elephant communicates with other elephants using infrasound. This is a very low frequence and wave.	су				
	An infrasound wave takes 2.9 seconds to travel 1.0 km from one elephant to another.						
	Cald	culate the speed of infrasound waves in m/s.					
	Stat	te the formula you use and show your working.					
	form	nula					
	wor	king					
		speed =m/s [2]				

(c)	The mass of an elephant is $3000\mathrm{kg}$. The volume of the elephant is $2.9\mathrm{m}^3$.						
	Calculate the average density of the elephant.						
	State the formula you use, show your working and give the unit of your answer.						
	formula						
	working						
	density = unit [3]						

7 Fig. 7.1 shows a diagram of the female reproductive system.

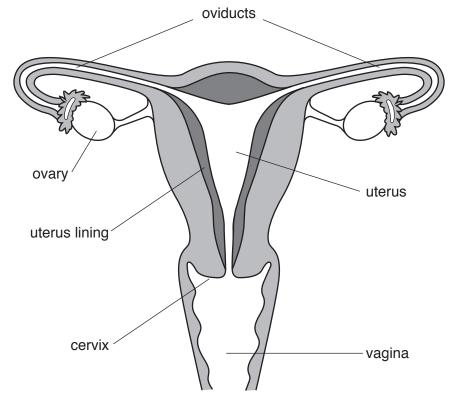


Fig. 7.1

- (a) Mark an X on Fig. 7.1 to show where an egg is released.
- **(b)** The boxes on the left show parts of the female reproductive system.

The boxes on the right show functions of the parts of the reproductive system.

Draw four lines to link each part of the female reproductive system with its function.

part	function
cervix	keeps baby in place during pregnancy
oviduct	penis placed here during intercourse
uterus	where fertilisation occurs
vagina	where growing baby develops

© UCLES 2018 0654/33/O/N/18

[1]

(c)	The menstrual cycle lasts for approximately 28 days.	
	Describe the main changes to the uterus lining during the menstrual cycle.	
	days 0–5	
	days 5–18	
	days 18–28	
		 3]
/ IN		2]
(a)	When an egg is fertilised, it becomes a zygote.	
	Describe, in detail, the early development of the zygote immediately after fertilisation.	
	[3	3]

BLANK PAGE

(a)	Son	ne voicanoes release the element sultur.							
	The sulfur sometimes catches fire, which is dangerous for people who collect the sulfur.								
	(i)	Name the element that combines with sulfur when it burns.							
			[1]						
	(ii)	Name the gas that is formed when sulfur burns.							
			[1]						
	(iii)	Suggest one harmful effect on health of the gas named in (a)(ii).							
/ L\	0		[1]						
(D)		oper sulfate, CuSO ₄ , and hydrogen sulfide, H ₂ S, are compounds containing sulfur.							
	(i)	Copper sulfate also contains a transition element.							
		State two general properties of compounds containing transition elements.							
		1							
		2	 [2]						
	(ii)	Predict the type of chemical bonding in hydrogen sulfide.							
		Explain your answer.							
		bonding							
		explanation							
			[2]						
	(iii)	Iron sulfide is formed when a mixture of iron and sulfur is heated.							
		Describe one way a student can show that a mixture of iron and sulfur is different from the compound iron sulfide.	mc						
			[1]						

9	(a)	Aluminium	can be	easily	shaped	into	containers	to	store	food
J	(a)	Alullillillillilli	can be	casily	SHapeu	IIII	Containers	ιO	31010	1000

	Des	cribe one other property that makes aluminium suitable for making food containers.
		[1]
(b)	The	frames of bicycles are also made from aluminium.
	The	air in the tyres of a bicycle warms up during a journey.
	(i)	Describe what happens to the air molecules in the tyres as the air warms up.
		[1]
	(ii)	Explain, in terms of molecules, why the pressure exerted on the walls of the tyre increases as the tyre warms up.
		[2]

(c) A cyclist has a mirror on his bicycle so that he can see behind him.

He sees a bus in his mirror. This is shown in Fig. 9.1.

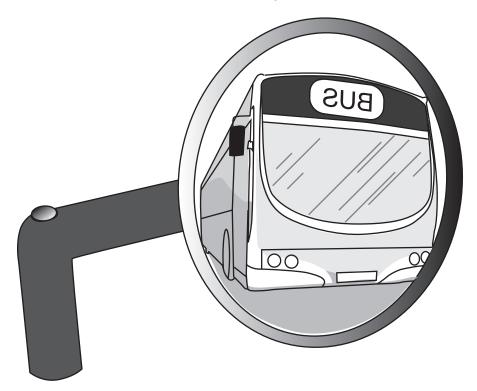


Fig. 9.1

The mirror in Fig. 9.1 is a plane mirror.

Select **three** words or phrases from the list to describe the image that he sees.

		inve	rted la	aterally invert	ed ma	gnified	
			same size	smaller	uprig	ht	
	1						
	2						
	3						[2]
(d)	The bicy	-	outside on a su	ınny day. Enerç	gy from the Sur	n heats the black s	saddle on the
	(i)	State the met	hod of energy	transfer betwee	en the Sun and	the Earth.	
							[1]
	(ii)	Name the par the Sun to the		magnetic spec	etrum involved i	n thermal energy	transfer from
							[1]
	(iii)	Fig. 9.2 shows	s an incomplet	e electromagn	etic spectrum.		
		On Fig. 9.2, w	rite your answ	er to (d)(ii) in t	he correct plac	e.	
_′ -ray	S			visible light		microwaves	
				Fig. 9.2			[1]
	(iv)	γ-rays are par	t of the electro	magnetic spec	trum, but beta	particles are not.	
		State two oth	er differences	between beta	particles and γ-	-rays.	
		1					
		2					
							[2]

- **10** Albinism is an inherited condition where there is no pigment in the skin and hair. The skin is very pale and the hair is white.
 - (a) Use words from the list to complete the definition of the term inheritance.

Each word may be used once, more than once or not at all.

diploid	father	gene	ration	genetic	
	mother	parent	physical		
Inheritance is define	ed as the transn	nission of		information fro	om
	to ger	neration.			[2]

(b) Fig. 10.1 is a photograph which shows a person with albinism.

Fig. 10.1

- The allele for albinism is a.
- The allele for no albinism is A.

One allele is inherited from the mother and one from the father.

(i) State the genotype for the person in Fig. 10.1.

_____[1]

(ii) State the term that can be used to describe the genotype Aa.

.....[1]

(c)	In a population, there is a greater number of people without albinism than with albinism.
	Explain, in terms of genetics, why there are fewer people with albinism than without albinism.
	[2]

11 Alkanes and alkenes are types of hydrocarbons.

Alkanes are obtained from petroleum.

Some alkanes are converted into alkenes.

- (a) Ethene is an alkene.
 - (i) Complete the diagram in Fig. 11.1 to show the structure of a molecule of ethene.

Fig. 11.1

[2]

(ii) Name the process used to produce alkenes from alkanes.

.....[1]

(b) A student uses the apparatus shown in Fig. 11.2 to test a gas for the presence of unsaturated hydrocarbons.

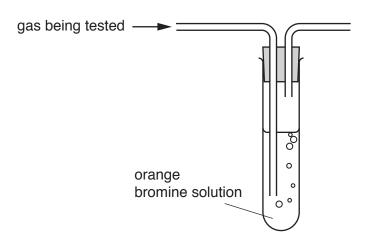


Fig. 11.2

He obtains a positive result for the presence of unsaturated hydrocarbons.

(i) State the observation that shows the presence of unsaturated hydrocarbons.

.....[1]

	(ii)	The student thinks that the positive result shows that the gas being tested is pure ethene
		Suggest two reasons why he may not be correct.
		1
		2
		[2
(c)	Fig.	11.3 shows the structure of a molecule of ethanol.
		H H H H — C — C — O — H H H
		Fig. 11.3
	(i)	Explain why ethanol is not an alkane.
		[1
	(ii)	State one use of ethanol.
		[4

(d) Fig. 11.4 shows apparatus a student uses to investigate the combustion of ethanol.

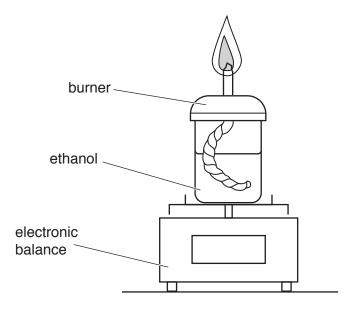
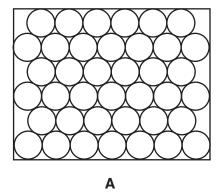



Fig. 11.4

Predict the change, if any, in the reading of the electronic balance as the ethanol burns.
Explain your prediction.
prediction
explanation

[2]

- **12** (a) Some ice has been made by freezing water.
 - (i) Fig. 12.1 shows the arrangement of the molecules in a solid and in a liquid.

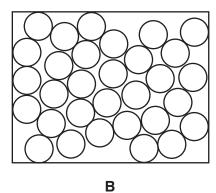


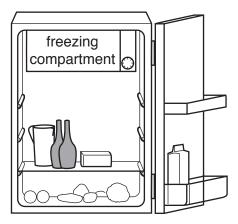
Fig. 12.1

Complete the statements below.

Diagram A shows a solid because the molecules are

1	
2	

Diagram **B** shows a liquid because the molecules are


1		
2		
	[2]	

(ii) Choose words or numbers from the list to complete the sentences which describe the formation of ice from water.

Each word or number may be used once, more than once or not at all.

boiling	condensation	melting	solidification	0	100
	When water turns to ice,		occurs.		
	This change happens at	°C whic	ch is the		point of ice.

(b) Fig. 12.2 shows a refrigerator with a freezing compartment at the top.

				Fig. 12.2			
	The	freezing com	npartment at the t	top cools all the	air in the refrige	rator.	
	Stat	te the main m	ethod of heat tra	nsfer used in thi	s process.		
							[1]
(c)	The	refrigerator o	contains two lamp	os connected in	series.		
	Lan	np A has a re	sistance of 3000	Ω and lamp B h	as a resistance o	of 6000 Ω.	
	Cal	culate the cor	nbined resistance	e of the two lam	os in series.		
	Sho	w your workii	ng.				
				resistance) =		Ω [1]
(d)	In a	nother refrige	erator, the 3000 Ω	lamp and the 6	000Ω lamp are 0	connected in para	ıllel.
	(i)	Put a circle a		likely value of th	ne combined res	istance of the lan	nps in this
		2000Ω	3000Ω	4500Ω	6000Ω	9000Ω	[1]
	(ii)	Give a reaso	on for your choice	e in (d)(i) .			
							[1]

13 Fig. 13.1 shows a cross-section through an artery and a vein.

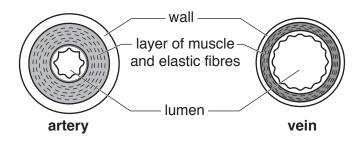


Fig. 13.1

(a)	(i)	Describe how the structure of the artery differs from the structure of the vein, as show Fig. 13.1.	n in
	(ii)	State one structure that is normally found in veins but is not shown in Fig. 13.1.	
	_		[1]
(b)		cribe how oxygen is carried in the blood.	
			[2]
(c)	Stat	te the names of the two veins that carry blood to the heart.	
	2		 [2]

The Periodic Table of Elements

	=	2 :	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	몺	radon			
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	¥	astatine -			
	5				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium	116	^	livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>.</u>	bismuth 209			
	2				9	ပ	carbon 12	14	SS	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Εl	flerovium
	=				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
dno											28	Z	nickel 59	46	Pd	palladium 106	78	ĭ	platinum 195	110	Ds	darmstadtium -
Group											27	ဝိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- :	I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
					•						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						loc	sss				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>Б</u>	tantalum 181	105	Ор	dubnium –
						ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium
	_				က	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ъ́	francium —

71	Γn	Intetium	175	103	ت	lawrencium	I
	Υp					_	
69	Tm	thulium	169	101	Md	mendelevium	ı
89	ш	erbium	167	100	Fm	ferminm	ı
29	웃	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ర	californium	ı
65	Тр	terbium	159	26	Ř	berkelium	ı
64	В	gadolinium	157	96	Cm	curium	ı
63	Ш	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	1	93	ď	neptunium	ı
09	PΝ	neodymium	144	92	\supset	uranium	238
69	Ą	praseodymium	141	91	Ра	protactinium	231
28	Ce	oerium	140	06	드	thorium	232
22	Га	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.